
www.scandiweb.com

PAGE 1

Scandiweb

Case study
Dogstrust ERP integration

Task description

Step 1 : Order export

Information provided at the very
beginning of integration process

www.dogstrustproducts.com is a

company that produces cosmetics

for dogs. They have a lot of not very

expensive products that they sell a

lot (they have sold about 15000 items

in the past 8 months). Delivery of all

orders is being handled by a fulfill-

ment agency (Prism) with their own

ERP system.

Our task was to export orders to the

ERP system.

There are at least two ways to implement order export:

1.	 Custom code order export. This will take approx. 3-4 days of development + it will be difficult to amend XML

schema in future.

2.	 Use Xtento order export extension - it costs EUR 149 and will require approx. 3 hours for extension installation

and XSL template development. Basically what it does is mapping between Magento internal variables (like

SKU, product names, order numbers, etc) to its own variables that then can be inserted in XSL template and

output to XML

1.	 ERP integrators contacts

2.	 Order export sample XML schema

3.	 Xtento order export Magento extension license

4.	 Folder structure on our server - where we should put xml with

orders and where we will receive updates

5.	 Scope of work:

5.1. Scandiweb: Install the order export extension

5.2. Scandiweb: Create xsl template (configure the extension)

5.3. Prism: set up xml file download from project server

5.4. Prism+Scandiweb: test the integration

www.scandiweb.com

PAGE 2

1.1 Extension installation

1.2 XML Schema Analysis

1.2 XSL template development

To export orders from Magento we have used Xtento Order export extension: http://www.xtento.com/magento-exten-

sions/magento-order-exportmodule.html.

Extension installation itself takes several minutes, just like any other correct extension - just upload files to Magento

via FTP and log out / log in to Magento backend.

The main requirement from the ERP side was to export orders at the moment they were placed, so that each XML file

contains one order. The extension does not allow it by default, but luckily Xtento staff (Sebastian from Germany) is

very helpful and responds really quickly, so we had no problem with modifying the extension to fit our needs.

Extension configuration is done by XSL template - file that describes how the output XML will look like, how xml file

will be named and where it will be stored in filesystem.

Customer has provided us an XML schema and file name structure - this is all that is required to create the template.

Before creating the XSL template it was essential to understand xml structure and what values should go where. Just

like PHP coding - before writing actual code you have to understand the logic, algorithm that you will implement.

One of the huge XML benefits comparing to other data transfer methods is that XML structure is human-readable -

you do not need any special software to understand in general what xml document is about.

However, after looking through XML we saw several fields with unclear meaning, for example :

XSL template describes how the output XML will look like. It is somehow similar to Magento template files - you can

put XML tags and describe what value must be placed inside tags.

Assume you want to produce the following xml (000000554 is real order number):

So we emailed Prism support and asked what should we put in these fields. Turned out that these are some generic

field that must be present in the XML file - this was their ERP system limitation. However, when processing actual

orders from Magento these fields will not be taken into account.

It was decided that we can just hard-code static values to the template so that these will be the same for all orders.

<MediaCode>W111</MediaCode>

<RentOptOut>NO</RentOptOut>

<EmailOptOut>NO</EmailOptOut>

<MailOptOut>NO</MailOptOut>

<CCTransactionCode></CCTransactionCode>

<OrderNumber>000000554</OrderNumber>

http://www.xtento.com/magento-extensions/magento-order-exportmodule.html
http://www.xtento.com/magento-extensions/magento-order-exportmodule.html

www.scandiweb.com

PAGE 3

Lets think about xml as a text document. Starting tag <OrderNumber> is just a piece of static text - it is string that is

always present, it is always exactly <OrderNumber> and it is always in the same position in the document.

In PHP you would write this as <? php echo ‘<OrderNumber>’; ?> - no variables, just line of text.

In XSL the same line will look as follows:

The next part of the line is order number - “000000554”. This is variable, because for each order it will be unique - so

we can not just hard-code one number in the template.

In PHP you would write something similar to <?php echo $order_id; ?>, where $order_id is variable that stores order

number value.

In Xtento order number is contained inside increment_id variable. XSL code to output this variable value:

The last thing is to add closing tag - </OrderNumber>. This is again just a static text:

XSL templates support foreach loops - it is very useful when you need to export dynamic content like items (order can

contain just one item, two, three...).

In php you would write foreach loop as <? foreach($items as $item){ ... }; ?> where $items is array of data and $item is

one element of that array.

In XSL for Xtento module it will look like this:

Items/item is reference to single item - single product - in array of products within one order.

<xsl:text disable-output-escaping=”yes”><OrderNumber></xsl:text>

<xsl:value-of select=”increment_id”/>

<xsl:text disable-output-escaping=”yes”></OrderNumber></xsl:text>

<xsl:for-each select=”items/item”>

...

</xsl:for-each>

www.scandiweb.com

PAGE 4

<xsl:for-each select=”items/item”>

 <xsl:text disable-output-escaping=”yes”><OrderLine></xsl:text>

 <xsl:text disable-output-escaping=”yes”><ProductCode></xsl:text>

 <xsl:value-of select=”sku”/>

 <xsl:text disable-output-escaping=”yes”></ProductCode></xsl:text>

 <xsl:text disable-output-escaping=”yes”></OrderLine></xsl:text>

</xsl:for-each>

<OrderLine>

 <ProductCode>SKU-1</ProductCode>

</OrderLine>

<OrderLine>

 <ProductCode>SKU-2</ProductCode>

</OrderLine>

All order values are well-structured - this is described in the Xtento extension documentation - they provide XSL

template with all possible fields. For example to get shipping address city, you should refer to shipping/city value. For

billing address the same value will be billing/city.

For example, to export all product SKUs from one order, you can write the following code:

If order contains two products - SKU-1 and SKU2-2 - then produced xml will look like this:

Step 3 : File transfer and processing

Faced problems

This step was out of our scope of work - it was completely set up by Prism.

To import/export files they are using SFTP protocol that is easy to use.

For order export every minute Linux crontab job checks order export folder and if there are new files - it transfers

them via SFTP to the ERP system. After the file has been sent it is moved to processed orders folder, so that order

export contains only NEW orders.

1.	 Slow ERP users response time. When we were starting the project we did not estimate the fact that ERP integra-

tors on the customer side will respond on our email in several days instead of several hours. Because there were

not much work for our developers, it resulted in long communication and overtimes, because by the time ERP

guys answer emails our developers were already working on another projects.

2.	 Unclear XML structure. Some fields like CCTransactionCode are not present in Magento and it was necessary to

clarify whether it is OK to leave these fields blank, put there some static value or just remove from XML schema.

www.scandiweb.com

PAGE 5

Author

Category

Title

Copyright

License

Scandiweb.com (info@scandiweb.com)

Training materials

Case study: Dogtrust ERP integration

(c) 2013 Scandiweb.com, Wonderland Media LTD (http://www.scandiweb.com)

License: http://opensource.org/licenses/afl-3.0.php Academic Free License (AFL 3.0)

3.	 Communication through third-party people. For some reason ERP integrators (although we were introduced in the

very beginning of the project) never contacted us directly. They were sending emails to our client, to the end-client

but not to us directly. This added some additional time lag in the communication, as well as it led to some miscom-

munication in the middle of the project, because a couple of our emails were just lost.

4.	 Due to poor communication we have missed out is that stock lists (product SKUs) are never synchronized - this

might lead into situation when shop is selling products that does not actually exist in the warehouse and vice versa.

5.	 Originally task scope was also to import stock updates from ERP to Magento, but due to poor communication this

was never implemented. We have sent questions on this topic to ERP guys but never heard back from them.

Conclusion

Although this type of integration is probably one of the easiest, there are some underwater rocks:

1.	 Communication. Integration heavily depends on the communication speed, because when you are connecting

two systems you can not do it just one way - there is some work to be done on both sides. Really due to slow

communication speed in this project we have lost approx. 2 weeks of time and after that had to work on Satur-

day/Sunday full-time to meet the deadline.

2.	 Communicate directly. If you are writing to your client emails that begin with “Please forward this to your integra-

tion specialists”, you are going to have a bad time because of time lag and miscommunication.

3.	 XML data. It is essential to understand what data will go in which order export XML field - without this understand-

ing you will not be able to create correct XSL template.

http://www.scandiweb.com

